量子纠缠原理与技术

量子纠缠原理与技术

想象你有两枚硬币,每一枚都有不同的正面或背面,你拿着一枚我拿着一枚,我们彼此距离非常远。我们在空中抛掷它们,接住,拍在桌子上。当我们拿开手查看结果时,我们预期各自看到“正面”的概率是50%,各自得到“背面”的概率也是50%。在普通的非纠缠宇宙中,你的结果和我的结果完全相互独立:如果你得到了一个“正面”结果,我的硬币显示为“正面”或“背面”的概率仍然各为50%,但是在某些情况下,这些结果会相互纠缠,也就是说,如果我们做这个实验,而你得到了“正面”结果,那么不用我来告诉你,你就会瞬间100%肯定我的硬币会显示为“背面”,即使我们相隔数光年而连1秒钟都还没有过去。

在量子物理中,我们通常纠缠的不是硬币而是单个的粒子,例如电子或光子等。例如,每个光子自旋+1或-1,如果两个光子互相纠缠,你测量它们中一个的自旋,就能瞬间知道另外一个的自旋,即使它跨过了半个宇宙。在你测量任一个粒子的自旋前,它们都以不确定状态存在;但是一旦你测量了其中一个,两者就都立刻知晓了。我们已经在地球上做了一个实验,实验中我们将两个纠缠光子分开很多千米,在数纳秒的间隔内测量它们的自旋。我们发现,如果测量发现它们其中一个自旋是+1,我们知晓另一个是-1的速度至少比以光速进行通信快10000倍。

量子纠缠是一种美妙的性质,我们可以将其用于许多方面,例如终极密钥安全系统,但是超光速通信是不可能实现的。要理解为什么,就需要理解量子物理的关键特性:只要你迫使纠缠系统的一部分坍缩为一个特定状态,你就无法通过测量系统的其它部分得到信息。正如量子力学先驱尼尔斯·玻尔曾经说过的那句名言:

如果量子力学没有震撼到你,一定是因为你还没有理解它。

量子纠缠原理与技术来源于零度电脑知识网
电脑培训班_怎样学习电脑_电脑知识与技术